Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
medRxiv ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38529492

RESUMO

Until recently, about three-quarters of all monogenic Parkinson's disease (PD) studies were performed in European/White ancestry, thereby severely limiting our insights into genotype-phenotype relationships at global scale. The first systematic approach to embrace monogenic PD worldwide, The Michael J. Fox Foundation Global Monogenic PD (MJFF GMPD) Project, contacted authors of publications reporting individuals carrying pathogenic variants in known PD-causing genes. In contrast, the Global Parkinson's Genetics Program's (GP2) Monogenic Network took a different approach by targeting PD centers not yet represented in the medical literature. Here, we describe combining both efforts in a "merger project" resulting in a global monogenic PD cohort with build-up of a sustainable infrastructure to identify the multi-ancestry spectrum of monogenic PD and enable studies of factors modifying penetrance and expression of monogenic PD. This effort demonstrates the value of future research based on team science approaches to generate comprehensive and globally relevant results.

3.
NPJ Parkinsons Dis ; 9(1): 100, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369645

RESUMO

The Monogenic Network of the Global Parkinson's Genetics Program (GP2) aims to create an efficient infrastructure to accelerate the identification of novel genetic causes of Parkinson's disease (PD) and to improve our understanding of already identified genetic causes, such as reduced penetrance and variable clinical expressivity of known disease-causing variants. We aim to perform short- and long-read whole-genome sequencing for up to 10,000 patients with parkinsonism. Important features of this project are global involvement and focusing on historically underrepresented populations.

4.
J Hum Genet ; 68(1): 47-49, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36100665

RESUMO

A large 78 kb insertion from chromosome 8q24.3 into Xq27.1 was identified as the cause of CMTX3 in three families of European descent from Australia (CMT193, CMT180) and New Zealand/United Kingdom (CMT623). Using the relatedness tool XIBD to perform genome-wide identity-by-descent (IBD) analysis on 16 affected individuals from the three families demonstrated they all share the CMTX3 disease locus identical-by-descent, confirming the mutation arose in a common ancestor. Relationship estimation from IBD segment data has genetically linked all three families through 6th and 7th degree relatives.


Assuntos
Doença de Charcot-Marie-Tooth , Humanos , Mutação , Doença de Charcot-Marie-Tooth/genética , Austrália/epidemiologia , Reino Unido/epidemiologia
5.
Brain ; 146(3): 880-897, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36380488

RESUMO

Distal hereditary motor neuropathies (dHMNs) are a group of inherited diseases involving the progressive, length-dependent axonal degeneration of the lower motor neurons. There are currently 29 reported causative genes and four disease loci implicated in dHMN. Despite the high genetic heterogeneity, mutations in the known genes account for less than 20% of dHMN cases, with the mutations identified predominantly being point mutations or indels. We have expanded the spectrum of dHMN mutations with the identification of a 1.35 Mb complex structural variation (SV) causing a form of autosomal dominant dHMN (DHMN1 OMIM %182906). Given the complex nature of SV mutations and the importance of studying pathogenic mechanisms in a neuronal setting, we generated a patient-derived DHMN1 motor neuron model harbouring the 1.35 Mb complex insertion. The DHMN1 complex insertion creates a duplicated copy of the first 10 exons of the ubiquitin-protein E3 ligase gene (UBE3C) and forms a novel gene-intergenic fusion sense transcript by incorporating a terminal pseudo-exon from intergenic sequence within the DHMN1 locus. The UBE3C intergenic fusion (UBE3C-IF) transcript does not undergo nonsense-mediated decay and results in a significant reduction of wild-type full-length UBE3C (UBE3C-WT) protein levels in DHMN1 iPSC-derived motor neurons. An engineered transgenic Caenorhabditis elegans model expressing the UBE3C-IF transcript in GABA-ergic motor neurons shows neuronal synaptic transmission deficits. Furthermore, the transgenic animals are susceptible to heat stress, which may implicate defective protein homeostasis underlying DHMN1 pathogenesis. Identification of the novel UBE3C-IF gene-intergenic fusion transcript in motor neurons highlights a potential new disease mechanism underlying axonal and motor neuron degeneration. These complementary models serve as a powerful paradigm for studying the DHMN1 complex SV and an invaluable tool for defining therapeutic targets for DHMN1.


Assuntos
Atrofia Muscular Espinal , Ubiquitina-Proteína Ligases , Animais , Atrofia Muscular Espinal/genética , Mutação , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Humanos
6.
J Peripher Nerv Syst ; 27(2): 120-126, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35224818

RESUMO

Biallelic mutations in sorbitol dehydrogenase (SORD) have been recently identified as a common cause of recessive axonal Charcot-Marie-Tooth neuropathy (CMT2). We aimed to assess a novel long-read sequencing approach to overcome current limitations in SORD neuropathy diagnostics due to the SORD2P pseudogene and the phasing of biallelic mutations in recessive disease. We conducted a screen of our Australian whole exome sequencing (WES) CMT cohort to identify individuals with homozygous or compound heterozygous SORD variants. Individuals detected with SORD mutations then underwent long-read sequencing, clinical assessment, and serum sorbitol analysis. An individual was detected with compound heterozygous truncating mutations in SORD exon 7, NM_003104.5:c.625C>T (p.Arg209Ter) and NM_003104.5:c.757del (p.Ala253GlnfsTer27). Subsequent Oxford Nanopore Tech (ONT) long-read sequencing was used to successfully differentiate SORD from the highly homologous non-functional SORD2P pseudogene and confirmed that the mutations were biallelic through haplotype-resolved analysis. The patient presented with axonal sensorimotor polyneuropathy (CMT2) and ulnar neuropathy without compression at the elbow. Burning neuropathic pain in the forearms and feet was also reported and was exacerbated by alcohol consumption and improved with alcohol cessation. UPLC-tandem mass spectrometry confirmed that the patient had elevated serum sorbitol levels (12.0 mg/L) consistent with levels previously observed in patients with biallelic SORD mutations. This represents a novel clinical presentation and expands the phenotype associated with biallelic SORD mutations causing CMT2. Our study is the first report of long-read sequencing for an individual with CMT and demonstrates the utility of this approach for clinical genomics.


Assuntos
Doença de Charcot-Marie-Tooth , L-Iditol 2-Desidrogenase , Austrália , Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/genética , Humanos , L-Iditol 2-Desidrogenase/genética , Mutação , Linhagem , Fenótipo , Sorbitol , Sequenciamento do Exoma
7.
Neurobiol Aging ; 108: 200-206, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34404558

RESUMO

Recent studies have identified SOD1, FUS, TARDBP and C9orf72 as major ALS-related genes in both European and Asian populations. However, significant differences exist in the mutation frequencies of these genes between various ancestral backgrounds. This study aims to identify the frequency of mutations in the common causative ALS genes in a multi-ethnic Malaysian cohort. We screened 101 Malaysian ALS patients including 3 familial and 98 sporadic cases for mutations in the coding regions of SOD1, FUS, and TARDBP by Sanger sequencing. The C9orf72 hexanucleotide repeat expansion was screened using the repeat-primed polymerase chain reaction assay. Mutations were found in 5.9% (6 of 101) of patients including 3.0% (3 of 101) of patients with the previously reported SOD1 missense mutations (p.V48A and p.N87S) and 3.0% (3 of 101) of patients with the C9orf72 repeat expansion. No mutations were found in the FUS and TARDBP genes. This study is the first to report the mutation frequency in an ethnically diverse Malaysian ALS population and warrants further investigation to reveal novel genes and disease pathways.


Assuntos
Esclerose Lateral Amiotrófica/etnologia , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Proteínas de Ligação a DNA/genética , Estudos de Associação Genética , Mutação , Proteína FUS de Ligação a RNA/genética , Superóxido Dismutase-1/genética , Adulto , Idoso , Estudos de Coortes , Análise Mutacional de DNA/métodos , Expansão das Repetições de DNA/genética , Feminino , Humanos , Malásia/etnologia , Masculino , Pessoa de Meia-Idade
8.
Hum Mol Genet ; 31(1): 133-145, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34387338

RESUMO

Charcot-Marie-Tooth (CMT) is a commonly inherited, non-fatal neurodegenerative disorder that affects sensory and motor neurons in patients. More than 90 genes are known to cause axonal and demyelinating forms of CMT. The p.R158H mutation in the pyruvate dehydrogenase kinase 3 (PDK3) gene is the genetic cause for an X linked form of axonal CMT (CMTX6). In vitro studies using patient fibroblasts and iPSC-derived motor neurons have shown that this mutation causes deficits in energy metabolism and mitochondrial function. Animal models that recapitulate pathogenic in vivo events in patients are crucial for investigating mechanisms of axonal degeneration and developing therapies for CMT. We have developed a C. elegans model of CMTX6 by knocking-in the p.R158H mutation in pdhk-2, the ortholog of PDK3. In addition, we have developed animal models overexpressing the wild type and mutant form of human PDK3 specifically in the GABAergic motor neurons of C. elegans. CMTX6 mutants generated in this study exhibit synaptic transmission deficits, locomotion defects and show signs of progressive neurodegeneration. Furthermore, the CMTX6 in vivo models display energy deficits that recapitulate the phenotype observed in patient fibroblasts and iPSC-derived motor neurons. Our CMTX6 animals represent the first in vivo model for this form of CMT and have provided novel insights into the cellular function and metabolic pathways perturbed by the p.R158H mutation, all the while closely replicating the clinical presentation observed in CMTX6 patients.


Assuntos
Doença de Charcot-Marie-Tooth , Trifosfato de Adenosina/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Humanos , Mutação , Fenótipo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Transmissão Sináptica/genética
9.
Neurology ; 95(24): e3163-e3179, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33144514

RESUMO

OBJECTIVE: To test the hypothesis that monogenic neuropathies such as Charcot-Marie-Tooth disease (CMT) contribute to frequent but often unexplained neuropathies in the elderly, we performed genetic analysis of 230 patients with unexplained axonal neuropathies and disease onset ≥35 years. METHODS: We recruited patients, collected clinical data, and conducted whole-exome sequencing (WES; n = 126) and MME single-gene sequencing (n = 104). We further queried WES repositories for MME variants and measured blood levels of the MME-encoded protein neprilysin. RESULTS: In the WES cohort, the overall detection rate for assumed disease-causing variants in genes for CMT or other conditions associated with neuropathies was 18.3% (familial cases 26.4%, apparently sporadic cases 12.3%). MME was most frequently involved and accounted for 34.8% of genetically solved cases. The relevance of MME for late-onset neuropathies was further supported by detection of a comparable proportion of cases in an independent patient sample, preponderance of MME variants among patients compared to population frequencies, retrieval of additional late-onset neuropathy patients with MME variants from WES repositories, and low neprilysin levels in patients' blood samples. Transmission of MME variants was often consistent with an incompletely penetrant autosomal-dominant trait and less frequently with autosomal-recessive inheritance. CONCLUSIONS: A detectable fraction of unexplained late-onset axonal neuropathies is genetically determined, by variants in either CMT genes or genes involved in other conditions that affect the peripheral nerves and can mimic a CMT phenotype. MME variants can act as completely penetrant recessive alleles but also confer dominantly inherited susceptibility to axonal neuropathies in an aging population.


Assuntos
Envelhecimento , Neuropatia Hereditária Motora e Sensorial/genética , Neprilisina/genética , Idade de Início , Idoso , Envelhecimento/sangue , Doença de Charcot-Marie-Tooth/sangue , Doença de Charcot-Marie-Tooth/genética , Feminino , Predisposição Genética para Doença/genética , Neuropatia Hereditária Motora e Sensorial/sangue , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Neprilisina/sangue , Sequenciamento do Exoma
11.
Dis Model Mech ; 13(2)2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31969342

RESUMO

ATP7A encodes a copper-transporting P-type ATPase and is one of 23 genes in which mutations produce distal hereditary motor neuropathy (dHMN), a group of diseases characterized by length-dependent axonal degeneration of motor neurons. We have generated induced pluripotent stem cell (iPSC)-derived motor neurons from a patient with the p.T994I ATP7A gene mutation as an in vitro model for X-linked dHMN (dHMNX). Patient motor neurons show a marked reduction of ATP7A protein levels in the soma when compared to control motor neurons and failed to upregulate expression of ATP7A under copper-loading conditions. These results recapitulate previous findings obtained in dHMNX patient fibroblasts and in primary cells from a rodent model of dHMNX, indicating that patient iPSC-derived motor neurons will be an important resource for studying the role of copper in the pathogenic processes that lead to axonal degeneration in dHMNX.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Modelos Biológicos , Atrofia Muscular Espinal/patologia , Sequência de Aminoácidos , Sequência de Bases , Diferenciação Celular , Cobre/metabolismo , ATPases Transportadoras de Cobre/genética , Regulação para Baixo/genética , Metabolismo Energético , Fibroblastos/metabolismo , Fibroblastos/patologia , Homeostase , Humanos , Cariótipo , Mitocôndrias/metabolismo , Neurônios Motores/patologia , Mutação/genética , Fenótipo , Medula Espinal/patologia
12.
Sci Rep ; 9(1): 19336, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852952

RESUMO

EGR2 (early growth response 2) is a crucial transcription factor for the myelination of the peripheral nervous system. Mutations in EGR2 are reported to cause a heterogenous spectrum of peripheral neuropathy with wide variation in both severity and age of onset, including demyelinating and axonal forms of Charcot-Marie Tooth (CMT) neuropathy, Dejerine-Sottas neuropathy (DSN/CMT3), and congenital hypomyelinating neuropathy (CHN/CMT4E). Here we report a sporadic de novo EGR2 variant, c.1232A > G (NM_000399.5), causing a missense p.Asp411Gly substitution and discovered through whole-exome sequencing (WES) of the proband. The resultant phenotype is severe demyelinating DSN with onset at two years of age, confirmed through nerve biopsy and electrophysiological examination. In silico analyses showed that the Asp411 residue is evolutionarily conserved, and the p.Asp411Gly variant was predicted to be deleterious by multiple in silico analyses. A luciferase-based reporter assay confirmed the reduced ability of p.Asp411Gly EGR2 to activate a PMP22 (peripheral myelin protein 22) enhancer element compared to wild-type EGR2. This study adds further support to the heterogeneity of EGR2-related peripheral neuropathies and provides strong functional evidence for the pathogenicity of the p.Asp411Gly EGR2 variant.


Assuntos
Proteína 2 de Resposta de Crescimento Precoce/genética , Predisposição Genética para Doença , Neuropatia Hereditária Motora e Sensorial/genética , Mutação/genética , Adolescente , Adulto , Idade de Início , Sequência de Aminoácidos , Sequência de Bases , Criança , Pré-Escolar , Simulação por Computador , Proteína 2 de Resposta de Crescimento Precoce/química , Feminino , Neuropatia Hereditária Motora e Sensorial/diagnóstico por imagem , Neuropatia Hereditária Motora e Sensorial/patologia , Neuropatia Hereditária Motora e Sensorial/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Condução Nervosa , Linhagem , Domínios Proteicos , Células de Schwann/metabolismo , Transcrição Gênica , Ativação Transcricional/genética , Sequenciamento do Exoma
13.
Autism Res ; 12(7): 1043-1056, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31119867

RESUMO

Gastrointestinal (GI) problems constitute an important comorbidity in many patients with autism. Multiple mutations in the neuroligin family of synaptic adhesion molecules are implicated in autism, however whether they are expressed and impact GI function via changes in the enteric nervous system is unknown. We report the GI symptoms of two brothers with autism and an R451C mutation in Nlgn3 encoding the synaptic adhesion protein, neuroligin-3. We confirm the presence of an array of synaptic genes in the murine GI tract and investigate the impact of impaired synaptic protein expression in mice carrying the human neuroligin-3 R451C missense mutation (NL3R451C ). Assessing in vivo gut dysfunction, we report faster small intestinal transit in NL3R451C compared to wild-type mice. Using an ex vivo colonic motility assay, we show increased sensitivity to GABAA receptor modulation in NL3R451C mice, a well-established Central Nervous System (CNS) feature associated with this mutation. We further show increased numbers of small intestine myenteric neurons in NL3R451C mice. Although we observed altered sensitivity to GABAA receptor modulators in the colon, there was no change in colonic neuronal numbers including the number of GABA-immunoreactive myenteric neurons. We further identified altered fecal microbial communities in NL3R451C mice. These results suggest that the R451C mutation affects small intestinal and colonic function and alter neuronal numbers in the small intestine as well as impact fecal microbes. Our findings identify a novel GI phenotype associated with the R451C mutation and highlight NL3R451C mice as a useful preclinical model of GI dysfunction in autism. Autism Res 2019, 12: 1043-1056. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: People with autism commonly experience gastrointestinal problems, however the cause is unknown. We report gut symptoms in patients with the autism-associated R451C mutation encoding the neuroligin-3 protein. We show that many of the genes implicated in autism are expressed in mouse gut. The neuroligin-3 R451C mutation alters the enteric nervous system, causes gastrointestinal dysfunction, and disrupts gut microbe populations in mice. Gut dysfunction in autism could be due to mutations that affect neuronal communication.


Assuntos
Transtorno Autístico/genética , Moléculas de Adesão Celular Neuronais/genética , Análise Mutacional de DNA , Gastroenteropatias/genética , Expressão Gênica/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Animais , Comorbidade , Gastroenteropatias/fisiopatologia , Microbioma Gastrointestinal/genética , Trânsito Gastrointestinal/genética , Humanos , Masculino , Camundongos , Plexo Mientérico/fisiopatologia , Neurônios/fisiologia , Fenótipo
16.
Metallomics ; 8(9): 981-92, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27293072

RESUMO

ATP7A is a P-type ATPase essential for cellular copper (Cu) transport and homeostasis. Loss-of-function ATP7A mutations causing systemic Cu deficiency are associated with severe Menkes disease or its milder allelic variant, occipital horn syndrome. We previously identified two rare ATP7A missense mutations (P1386S and T994I) leading to a non-fatal form of motor neuron disorder, X-linked distal hereditary motor neuropathy (dHMNX), without overt signs of systemic Cu deficiency. Recent investigations using a tissue specific Atp7a knock out model have demonstrated that Cu plays an essential role in motor neuron maintenance and function, however the underlying pathogenic mechanisms of ATP7A mutations causing axonal degeneration remain unknown. We have generated an Atp7a conditional knock in mouse model of dHMNX expressing Atp7a(T985I), the orthologue of the human ATP7A(T994I) identified in dHMNX patients. Although a degenerative motor phenotype is not observed, the knock in Atp7a(T985I/Y) mice show altered Cu levels within the peripheral and central nervous systems, an increased diameter of the muscle fibres and altered myogenin and myostatin gene expression. Atp7a(T985I/Y) mice have reduced Atp7a protein levels and recapitulate the defective trafficking and altered post-translational regulatory mechanisms observed in the human ATP7A(T994I) patient fibroblasts. Our model provides a unique opportunity to characterise the molecular phenotype of dHMNX and the time course of cellular events leading to the process of axonal degeneration in this disease.


Assuntos
ATPases Transportadoras de Cobre/genética , Cobre/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Doença dos Neurônios Motores/patologia , Mutação , Animais , Comportamento Animal , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo , Miogenina/metabolismo , Miostatina/metabolismo
17.
J Vis Exp ; (108): 53828, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26862815

RESUMO

The enteric nervous system (ENS) plays an important role in regulating gastrointestinal (GI) motility and can function independently of the central nervous system. Changes in ENS function are a major cause of GI symptoms and disease and may contribute to GI symptoms reported in neuropsychiatric disorders including autism. It is well established that isolated colon segments generate spontaneous, rhythmic contractions known as Colonic Migrating Motor Complexes (CMMCs). A procedure to analyze the enteric neural regulation of CMMCs in ex vivo preparations of mouse colon is described. The colon is dissected from the animal and flushed to remove fecal content prior to being cannulated in an organ bath. Data is acquired via a video camera positioned above the organ bath and converted to high-resolution spatiotemporal maps via an in-house software package. Using this technique, baseline contractile patterns and pharmacological effects on ENS function in colon segments can be compared over 3-4 hr. In addition, propagation length and speed of CMMCs can be recorded as well as changes in gut diameter and contraction frequency. This technique is useful for characterizing gastrointestinal motility patterns in transgenic mouse models (and in other species including rat and guinea pig). In this way, pharmacologically induced changes in CMMCs are recorded in wild type mice and in the Neuroligin-3(R451C) mouse model of autism. Furthermore, this technique can be applied to other regions of the GI tract including the duodenum, jejunum and ileum and at different developmental ages in mice.


Assuntos
Colo/diagnóstico por imagem , Sistema Nervoso Entérico/fisiologia , Gastroenteropatias/fisiopatologia , Motilidade Gastrointestinal/fisiologia , Íleo/diagnóstico por imagem , Complexo Mioelétrico Migratório/fisiologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos
18.
Am J Physiol Gastrointest Liver Physiol ; 304(8): G749-61, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23392236

RESUMO

Segmentation is an important process in nutrient mixing and absorption; however, the mechanisms underlying this motility pattern are poorly understood. Segmentation can be induced by luminal perfusion of fatty acid in guinea pig small intestine in vitro and mimicked by the serotonin (5-HT) reuptake inhibitor fluoxetine (300 nM) and by cholecystokinin (CCK). Serotonergic and CCK-related mechanisms underlying nutrient-induced segmentation were investigated using selective 5-HT and CCK receptor antagonists on isolated segments of small intestine luminally perfused with 1 mM decanoic acid. Motility patterns were analyzed using video imaging and spatiotemporal maps. Segmenting activity mediated by decanoic acid was depressed following luminal application of the 5-HT receptor antagonists granisetron (5-HT(3), 1 µM) and SB-207266 (5-HT(4), 10 nM) and the CCK receptor antagonists devazepide (CCK-1, 300 nM) and L-365260 (CCK-2, 300 nM), but these antagonists did not further depress segmentation when combined. The P2 receptor antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulfonate (10 µM) had no effect on activity. Serosal application of 5-HT antagonists had little effect on segmentation in the duodenum but reduced activity in the jejunum when granisetron and SB-207266 were applied together. These results reveal that 5-HT(3) and 5-HT(4) receptors, as well as CCK-1 and CCK-2 receptors, are critical in regulating decanoic acid-induced segmentation. Computational simulation indicated that these data are consistent with decanoic acid activating two pathways in the mucosa that converge within the enteric neural circuitry, while contraction-induced release of 5-HT from the mucosa provides feedback into the neural circuit to set the time course of the overall contractile activity.


Assuntos
Colecistocinina/metabolismo , Motilidade Gastrointestinal/fisiologia , Intestino Delgado/fisiologia , Serotonina/metabolismo , Animais , Ácidos Decanoicos/metabolismo , Sistema Nervoso Entérico/efeitos dos fármacos , Sistema Nervoso Entérico/fisiologia , Ácidos Graxos/metabolismo , Feminino , Fluoxetina/farmacologia , Motilidade Gastrointestinal/efeitos dos fármacos , Cobaias , Intestino Delgado/efeitos dos fármacos , Masculino , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Complexo Mioelétrico Migratório/efeitos dos fármacos , Complexo Mioelétrico Migratório/fisiologia , Receptor de Colecistocinina A/metabolismo , Receptor de Colecistocinina B/metabolismo , Receptores Purinérgicos P2X/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Receptores 5-HT4 de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
19.
Front Neurosci ; 4: 162, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21048896

RESUMO

Cholera toxin (CT) is well established to produce diarrhea by producing hyperactivity of the enteric neural circuits that regulate water and electrolyte secretion. Its effects on intestinal motor patterns are less well understood. We examined the effects of luminal CT on motor activity of guinea-pig jejunum in vitro. Segments of jejunum were cannulated at either end and mounted horizontally. Their contractile activity was video-imaged and the recordings were used to construct spatiotemporal maps of contractile activity with CT (1.25 or 12.5 µg/ml) in the lumen. Both concentrations of CT induced propulsive motor activity in jejunal segments. The effect of 1.25 µg/ml CT was markedly enhanced by co-incubation with granisetron (5-HT(3) antagonist, 1 µM), which prevents the hypersecretion induced by CT. The increased propulsive activity was not accompanied by increased segmentation and occurred very early after exposure to CT in the presence of granisetron. Luminal CT also reduced the pressure threshold for saline distension evoked propulsive reflexes, an effect resistant to granisetron. In contrast, CT prevented the induction of segmenting contractions by luminal decanoic acid, so its effects on propulsive and segmenting contractile activity are distinctly different. Thus, in addition to producing hypersecretion, CT excites propulsive motor activity with an entirely different time course and pharmacology, but inhibits nutrient-induced segmentation. This suggests that CT excites more than one enteric neural circuit and that propulsive and segmenting motor patterns are differentially regulated.

20.
J Physiol ; 588(Pt 7): 1153-69, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20142273

RESUMO

In mature animals, neurons and interstitial cells of Cajal (ICC) are essential for organized intestinal motility. We investigated motility patterns, and the roles of neurons and myenteric ICC (ICC-MP), in the duodenum and colon of developing mice in vitro. Spatiotemporal mapping revealed regular contractions that propagated in both directions from embryonic day (E)13.5 in the duodenum and E14.5 in the colon. The propagating contractions, which we termed ripples, were unaffected by tetrodotoxin and were present in the intestine of embryonic Ret null mutant mice, which lack enteric neurons. Neurally mediated motility patterns were first observed in the duodenum at E18.5. To examine the possible role of ICC-MP, three approaches were used. First, intracellular recordings from the circular muscle of the duodenum did not detect slow wave activity at E16.5, but regular slow waves were observed in some preparations of E18.5 duodenum. Second, spatiotemporal mapping revealed ripples in the duodenum of E13.5 and E16.5 W/W(v) embryos, which lack KIT+ ICC-MP and slow waves. Third, KIT-immunoreactive cells with the morphology of ICC-MP were first observed at E18.5. Hence, ripples do not appear to be mediated by ICC-MP and must be myogenic. Ripples in the duodenum and colon were abolished by cobalt chloride (1 mm). The L-type Ca(2+) channel antagonist nicardipine (2.5 microm) abolished ripples in the duodenum and reduced their frequency and size in the colon. Our findings demonstrate that prominent propagating contractions (ripples) are present in the duodenum and colon of fetal mice. Ripples are not mediated by neurons or ICC-MP, but entry of extracellular Ca(2+) through L-type Ca(2+) channels is essential. Thus, during development of the intestine, the first motor patterns to develop are myogenic.


Assuntos
Colo/embriologia , Duodeno/embriologia , Feto/fisiologia , Motilidade Gastrointestinal , Células Intersticiais de Cajal/fisiologia , Plexo Mientérico/fisiologia , Animais , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo L/fisiologia , Cobalto/farmacologia , Colo/inervação , Colo/fisiologia , Duodeno/inervação , Duodeno/fisiologia , Feminino , Feto/inervação , Células Intersticiais de Cajal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Mutantes , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Plexo Mientérico/citologia , Neurônios/fisiologia , Nicardipino/farmacologia , Proteínas Proto-Oncogênicas c-kit/fisiologia , Tetrodotoxina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...